Noticias

Nueva red neuronal del MIT: un sistema de aprendizaje automático «líquido»

Los investigadores del MIT han desarrollado un tipo de red neuronal que aprende en el trabajo, no solo durante su fase de entrenamiento. Estos algoritmos flexibles, denominados redes «líquidas», cambian sus ecuaciones subyacentes para adaptarse continuamente a las nuevas entradas de datos. El avance podría ayudar a la toma de decisiones basadas en flujos de datos que cambian con el tiempo, incluidos los involucrados en el diagnóstico médico y la conducción autónoma.

«Este es un camino a seguir para el futuro del control de robots, el procesamiento del lenguaje natural, el procesamiento de video, cualquier forma de procesamiento de datos de series de tiempo», dice Ramin Hasani, autor principal del estudio. «El potencial es realmente significativo».

La investigación se presentará en la Conferencia AAAI sobre Inteligencia Artificial de febrero. Además de Hasani, un postdoctorado en el Laboratorio de Ciencias de la Computación e Inteligencia Artificial del MIT (CSAIL), los coautores del MIT incluyen a Daniela Rus, directora de CSAIL y el Profesor Andrew y Erna Viterbi de Ingeniería Eléctrica y Ciencias de la Computación, y el estudiante de doctorado Alexander Amini. Otros coautores incluyen a Mathias Lechner del Instituto de Ciencia y Tecnología de Austria y Radu Grosu de la Universidad Tecnológica de Viena.

Un mundo de aplicaciones

Los datos de series de tiempo son ubicuos y vitales para nuestra comprensión del mundo, según Hasani. “El mundo real se trata de secuencias. Incluso nuestra percepción: no estás percibiendo imágenes, estás percibiendo secuencias de imágenes «, dice. «Entonces, los datos de series de tiempo realmente crean nuestra realidad».

Señala el procesamiento de video, los datos financieros y las aplicaciones de diagnóstico médico como ejemplos de series de tiempo que son fundamentales para la sociedad. Las vicisitudes de estos flujos de datos en constante cambio pueden ser impredecibles. Sin embargo, analizar estos datos en tiempo real y usarlos para anticipar el comportamiento futuro puede impulsar el desarrollo de tecnologías emergentes como los automóviles autónomos. Entonces Hasani construyó un algoritmo adecuado para la tarea.

Redacción IA

Entradas recientes

IA impulsa innovación alimentaria: Grupo Kosmos

En la era de la digitalización, la industria alimentaria se enfrenta a retos que requieren…

1 día hace

Midjourney convierte a Discord en la red social de la IA

Aunque originalmente nació como una plataforma para gamers, Discord se ha reinventado silenciosamente como una…

1 día hace

Conectar a Colombia con inteligencia artificial

Colombia enfrenta un sistema de salud que funciona con información fragmentada y actores que operan…

2 días hace

IA transforma la ciberseguridad

Luis Alberto Valle Rueda, ingeniero en sistemas de la empresa Fortinet México, dio a conocer…

2 días hace

Ubisoft apuesta por la IA generativa

Desde el primer minuto quedó claro: la IA generativa no será solo una herramienta en…

3 días hace

IA redefine la empleabilidad en México

La Inteligencia Artificial (IA) está transformando el panorama laboral en México y redefiniendo lo que…

3 días hace