Medicina

Aprendizaje profundo permite exploraciones cardíacas más seguras

Investigadores de Rigshospitalet en Dinamarca han investigado el uso del aprendizaje profundo para reducir el ruido en imágenes de PET de dosis baja. Ellos validaron la precisión diagnóstica de este enfoque utilizando imágenes de 18F-FDG de pacientes con cardiopatía isquémica, detallando sus hallazgos en  Physics in Medicine & Biology.

La tomografía por emisión de positrones (PET) con el radiotrazador 18F-FDG proporciona una herramienta importante para evaluar la salud del músculo cardíaco en pacientes con cardiopatía isquémica, en la que las arterias coronarias estrechas reducen el suministro de sangre al corazón. Estas exploraciones PET ayudan a identificar el nivel de daño en el músculo cardíaco y juegan un papel importante en la toma de decisiones clínicas.

Las pautas actuales recomiendan inyectar una dosis de 200 a 350 MBq de 18F-FDG. Pero reducir esta dosis de trazador disminuirá la exposición a la radiación del paciente, un objetivo esencial de cualquier procedimiento de diagnóstico, así como también reducirá los costos de imágenes y potencialmente abrirá nuevas aplicaciones. Sin embargo, la desventaja es que una dosis de trazador más baja puede producir imágenes de peor calidad, lo que reduce la precisión del diagnóstico.

Reducir ruido sin perder precisión del diagnóstico con aprendizaje profundo

Los investigadores reconstruyeron imágenes PET estáticas y controladas por ECG (con ocho puertas). También simularon imágenes de dosis reducida con 1% y 10% de los recuentos totales, correspondientes a dosis trazadoras de 3 y 30 MBq, respectivamente. Luego entrenaron a U-Net, una red neuronal convolucional 3D desarrollada para la segmentación de imágenes biomédicas, para eliminar el ruido de los cuatro conjuntos de imágenes PET de dosis reducida (datos estáticos y cerrados con los dos umbrales de reducción de dosis).

Los investigadores concluyen que su modelo de reducción de ruido de aprendizaje profundo permite una reducción significativa de la dosis de 18F-FDG en las imágenes de PET cardíacas sin perder la precisión del diagnóstico. “Es posible una reducción a una centésima parte de la dosis con métricas clínicas cuantitativas comparables a las obtenidas con una dosis completa”, escriben. «Esta reducción de dosis es importante para los pacientes, el personal, la protección radiológica en general y la economía de la atención médica».

Redaccion

Entradas recientes

Hitachi lanza Fábrica Global de IA sobre

Hitachi anunció la creación de una Fábrica Global de Inteligencia Artificial (IA), construida sobre la…

4 horas hace

Acelerar la sostenibilidad con IA

Miles de líderes mundiales se reunieron en la Semana del Clima de Nueva York 2025,…

4 horas hace

Retos y oportunidades de la IA en el e-commerce: José Reynoso González

El comercio electrónico mantiene un crecimiento constante y, con la incursión de la inteligencia artificial,…

1 día hace

Valoraciones de las startups de IA aumentan el temor de una burbuja

“Hay una especie de burbuja publicitaria en el espacio de capital de riesgo en etapa…

1 día hace

HONOR ALPHA Store, la primera tienda del mundo de IA

HONOR acaba de inaugurar la HONOR ALPHA Store, un espacio definido por la compañía como…

1 día hace

América Latina acelera en inteligencia artificial

América Latina y el Caribe muestra una adopción de inteligencia artificial que supera su peso…

1 día hace