Lenguajes

Model Search de Google: plataforma de código abierto con modelos de aprendizaje automático

Tiempo de lectura: 2 minutos

Google AI ha anunciado el lanzamiento de Model Search, una plataforma que ayudará a los investigadores a desarrollar modelos de aprendizaje automático (ML) de forma automática y eficiente. La búsqueda de modelos no es específica de un dominio, es flexible y está bien equipada para encontrar la arquitectura adecuada que se adapta mejor a un conjunto de datos y a un problema determinados.

¿Cuál es la utilidad de Model Search?

Al mismo tiempo, minimiza el tiempo, el esfuerzo y los recursos de codificación. Model Search se basa en Tensorflow y se puede ejecutar tanto en configuraciones distribuidas como en una sola máquina.

El éxito de las redes neuronales a menudo depende de la medida en que se puedan generalizar a diversas tareas. Es un desafío diseñar redes neuronales que puedan generalizarse bien, ya que la comprensión de este concepto por parte de la comunidad de investigadores es limitada.

Las limitaciones se complican cuando se tienen en cuenta los dominios de Machine Learning. Técnicas como la búsqueda de arquitectura neuronal (NAS) utilizan algoritmos, aprendizaje por refuerzo (RL), algoritmos evolutivos y búsqueda combinatoria para construir una red neuronal a partir de un espacio de búsqueda determinado.

Aunque estas técnicas pueden ofrecer mejores resultados que sus contrapartes diseñadas manualmente, estos algoritmos suelen realizar grandes cálculos y necesitan miles de modelos para entrenar antes de converger y son específicos de dominio.

Estas deficiencias se pueden superar mediante la búsqueda de modelos. El sistema de búsqueda de modelos está compuesto por varios instructores, un algoritmo de búsqueda y una base de datos para almacenar los modelos evaluados. El sistema puede ejecutar experimentos de capacitación y evaluación de manera adaptativa pero asincrónica. Cada capacitador realiza experimentos por su cuenta y todos los capacitadores comparten el conocimiento de sus experimentos. Al comienzo de cada ciclo, el algoritmo de búsqueda repasa todas las pruebas completadas y luego usa la búsqueda de haz para determinar qué probar a continuación. Luego implora la mutación sobre una de las mejores arquitecturas que encuentra y asigna el modelo resultante a un entrenador.

Redaccion

Entradas recientes

Netflix incorpora la IA en sus producciones

El codirector ejecutivo de Netflix, Ted Sarandos, declaró que se empleó inteligencia artificial (IA) en…

2 semanas hace

WeTransfer utilizará archivos de usuarios para entrenar su IA

WeTransfer, la popular plataforma para enviar archivos de gran tamaño, anunció un cambio significativo en…

2 semanas hace

Trump invertirá 92.000 millones de dólares en IA en Pensilvania

El presidente estadounidense, Donald Trump, acompañado del senador republicano por Pensilvania Dave McCormick, anunció una…

3 semanas hace

IA de Elon Musk consigue contrato con el Pentágono

La compañía de inteligencia artificial de Elon Musk, xAI, firmó un contrato con el Departamento…

3 semanas hace

Videojuegos generan signos de ansiedad

Menores de edad, quienes practican videojuegos 10 horas o más, presentan signos de ansiedad y…

3 semanas hace

Así funciona la IA de la UNAM para buscar niños desaparecidos

La Universidad Nacional Autónoma de México (UNAM) ha desarrollado un proyecto pionero que utiliza inteligencia…

3 semanas hace