El tema de la Inteligencia Artificial (IA) es un gran bombo. Se puede leer, escuchar y ver en todas partes y en todos los medios. Los investigadores del Instituto de Neuroinformática de la RUB (Ruhr-Universität Bochum) trabajan en este tema desde hace 25 años. De acuerdo con su enfoque, las nuevas estrategias deben primero hacer que el aprendizaje automático sea más eficiente y flexible, de modo que la IA pueda actuar con seriedad e inteligencia.
Aprendizaje automático
Según Laurenz Wiskott, de la cátedra de Teoría de los Sistemas Neurales de la RUB, actualmente existen dos formas exitosas de aprendizaje automático: «redes neuronales profundas» (Deep Learning) y «aprendizaje por refuerzo» (Reinforcement Learning). En ambos casos, un sistema es entrenado para una tarea específica, como tomar una decisión. El resultado deseado se da junto con la asignación. Después de unas cuantas carreras, el sistema de IA aprende a resolver esta tarea cada vez más rápido, a menudo mejor que los humanos.

Falta de inteligencia
El problema con estas formas de aprendizaje automático es que son bastante estúpidas y, además, antiguas: estas técnicas datan de los años ochenta del siglo pasado. El hecho de que puedan utilizarse en absoluto se debe únicamente al hecho de que hoy en día se dispone de más capacidad y datos informáticos. Hoy en día, los procesos de aprendizaje realmente ineficientes con sus innumerables repeticiones pueden ser completados en un período de tiempo extremadamente corto, de modo que el entrenamiento estúpido puede ser completado en una cantidad de tiempo aceptable.
Pero la pregunta sigue siendo: ¿cómo se puede flexibilizar el aprendizaje automático? Después de todo, los sistemas estúpidamente entrenados sólo son buenos en uno de los aspectos para los que han sido entrenados. Estos sistemas no pueden generalizar sus capacidades ni transferirlas a tareas relacionadas.
Nuevos enfoques
Por lo tanto, los investigadores se centran en nuevas estrategias que ayudan a los sistemas de IA a descubrir estructuras de forma independiente. Un ejemplo de ello es la tarea de formar clusters o identificar y evaluar los cambios lentos en los vídeos. Este «aprendizaje desatendido» significa que los ordenadores sólo pueden descubrir el mundo y, por lo tanto, abordar tareas para las que no han sido formados explícitamente.